"Student-Friendly" Standards for CCGPS Analytic Geometry

 Unit 5Quadratic Functions

| $\begin{array}{c}\text { Standard } \\ \text { Code }\end{array}$ | $\begin{array}{c}\text { Mastery } \\ \text { Level }\end{array}$ | Standard |
| :--- | :--- | :--- |\(\left.| \begin{array}{l}Identify the different parts of the expression and explain their

meaning within the context of a problem.\end{array}\right\}\)

Standard Code	Mastery Level	Standard
		Interpret, in context, the average rate of change of a function over a specified interval.
F.IF.7.a		Graph quadratic functions expressed symbolically, and show key features of the graph including intercepts and maxima or minima. Graph simple cases by hand, and use technology to show more complicated cases.
F.IF.8.a		Use the process of factoring and completing the square in a quadratic function to show - zeros, - extreme values, and - symmetry of the graph, and interpret these in terms of a context.
F.IF. 9		Compare the key features of two functions represented in different ways. For example, compare the end behavior of two functions, one of which is represented graphically and the other is represented symbolically.
F.BF.1.a		From context, be able to - write an explicit expression, - define a recursive process, or - describe the calculations needed to model a function between two quantities.
F.BF.1.b		Combine standard function types, such as linear and exponential, using arithmetic operations.
F.BF. 3		Identify, through experimenting with technology, the effect on the graph of a function by replacing $f(x)$ with - $f(x)+k, k f(x)$, - $f(k x)$, and - $f(x+k)$ for specific values of k (both positive and negative).
		Given the graphs of the original function and a transformation, determine the value of (k).
		Recognize even and odd functions from their graphs and equations.
F.LE. 3		Make the connection, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or any other polynomial function.

| Standard
 Code | Mastery
 Level | Standard |
| :--- | :--- | :--- |$|$| Create a scatter plot from two quantitative variables. |
| :--- |
| S.ID.6.a |

