September 23, 2015

Why is the concept of a function important and how do I use function notation to show a variety of situations modeled by functions?

Today's Standards

MGSE9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

MGSE9-12.F.LE.1b Recognize situations in which one quantity Changes at a constant rate per unit interval relative to another.

coefficient - a number multiplied by a Variable
 (so in this Case, the slope!)

constant - a Value that does not change

initial value - the y-intercept of a graph
(makes sense because this is where
you start when graphing a line using
the slope-intercept form)

Linear Model: the equation of the line (written in slope-intercept form) that represents the data

$$y = mx + b$$
 or $f(x) = mx + b$

Slope
Rate of change

y-intercept
Initial value

Rate of Change: the ratio of the Change in the output Value and the input Value of a function. (Slope)

 $\frac{\text{Change in Dependent}}{\text{Change in Independent}} = \frac{\text{Output}}{\text{Input}} = \frac{y}{x} = \frac{\text{rise}}{\text{run}}$

(same as slope!)

When the rate of Change is linear we call it a Constant rate of Change.

Comparing rates of change:

When we compare rates of change we are comparing the slopes.

- The <u>lowest</u> rate of change has the smallest absolute value.
- The greatest rate of Change has the largest absolute Value.

Slopes: positive, negative, zero and undefined

increasing change: when the slope is positive

decreasing change: when the slope is negative

What is the initial value of each function? 1. $y = \frac{2}{3}x + 2$ 2. x

1.
$$y = \frac{2}{3}x + 2$$

		-
×	У	1
-1	2	
0	4	7

3.	×	У
	-1	-5
	0	-4
	1	-3

Is the rate of change increasing or decreasing?

7.
$$y = -\frac{3}{4} + 5$$

11.
$$y = 2x - 3$$

Rate of Change:

a.
$$y = x + 2$$

b.
$$y = -3x - 2$$

a.
$$y = x + 2$$
 b. $y = -3x - 2$ c. $y = -\frac{3}{4}x + 3$ d. $y = 2x + 5$

d.
$$y = 2x + 5$$

17. Which equation above has the greatest rate of change?

Complete Class Practice Handout

