

September 16, 2015

Why is the concept of a function important and how do I use function notation to show variety of situations modeled by functions

Today's Standards

MGSE9-12.F.IF.1. Understand that a function from one set (called the domain) assigns to each element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input f. The graph of f is the graph of the equation f is the graph of the equation f is the equation f

MGSE9-12.F.IF.2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. (*Draw examples from linear and exponential functions.*)

Relation

A relation is any set o

Examples: {(1, 4), (-3, 7), (-6, -8)} {(1, 4), (2, 5), (1, 6)}

In math a relation can be a table, a mapping or a graph. Think of a relation as "relationship" -- things that are paired together!

Table

X	у
2	2
-2	3
0	-1

Mapping

Graph

Everyday examples of a relation

Names of students Homerooms Names of U.S. citizens Social Security #'s

⋄ Domain and Range of a Relation **⋄**

Domain: the set of all the x-values of a rela

Range: the set of all the y-values of a relat

Example: {(1, 4), (-3, 7), (-6, -8)}

Domain: {-6, -3,

1}

Range: {-8, 4, 7}

Function

A function is a relation where every element of the domain is paired with EXACTLY one element of the range.

FUNCTION

 $\{(1, 4), (-3, 7), (-6, -8)\}$

NOT A FUNCTION

 $\{(1, 4), (2, 5), (1, 6)\}$

Let's decide what could be a function!

Example

S: _____

F NF

Reason:

2... F NF

Reason:

F NF Reason:

F NF Reason:

Input vs. Output

The domain of a function is also called the function's input. It gets put "in" to the function. The range of a function is also called the function's output. It is what you get "out" of the function!

REMEMBER: Each input can have ONLY one unique output if the relation is a function! However, different inputs can have the same output!

Example: $\{(1, 4), (2, 4), (-3, 4)\}$

List the domain and range for each of the following.

1.

Domain: {-8, -4, 2, 5} Range: {-2, 3, 5}

Domain: {-2, 5, 6, 1} Range: {-4, -1, 3, 5}

	Х	У
5.	12	-8
	2	3
	7	4
	-9	4

Domain: {-9, 2, 7, 12} Range: {-8, 3, 4}

input

output

Domain: {-6, 4, 5} Range: {-3, 3, 8}

Write the following equations in

function notation. 1. y = -6x - 2 2. y = 4x + 178

1.
$$y = -6x - 2$$

 $f(x) = -6x - 2$

3.
$$y = \frac{2}{3} x - 7$$

$$g(x) = \frac{2}{3} x - 7$$

5.
$$y = 5$$
 $f(x) = 5$

2.
$$y = 4x + 1$$
 $x = 4x + 1$ $y = 4x + 1$

7
4.
$$y = 123 + x$$

$$f(x) = 123 + \frac{7}{8}x$$

6.
$$y = x^2 - 4$$

 $q(x) = x^2 - 4$

Homework

Complete Practice Handout

