

How do I solve an equation in one variable? How do I justify the solution to an equation?

Today's CCGPS Standards

MCC9-12.A.REL1 Explain each step in solving a simple equation as following fr.om the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

_	Name of Property	Statement of Property	<u>In my own words</u>
Most Helpful	Addition Property of Equality	If $a = b$, then $a + c = b + c$	I can <u>add</u> the same thing to both sides of an equation without changing the solutions.
	Subtraction Property of Equality	If $\mathbf{a} = \mathbf{b}$, then $\mathbf{a} - \mathbf{c} = \mathbf{b} - \mathbf{c}$	I can <u>subtract</u> the same thing from both sides of an equation without changing the solutions.
	Multiplication Property of Equality	If a = b, then ac = bc	I can <u>multiply</u> both sides of an equation by the same number (other than 0) without changing the solutions.
	Division Property of Equality	If $\mathbf{a} = \mathbf{b}$ and $\mathbf{c} \neq 0$, then $\mathbf{a} / \mathbf{c} = \mathbf{b} / \mathbf{c}$	I can <u>divide</u> both sides of an equation by the same number (other than 0) without changing the solutions.
	Distributive Property of Equality	For any real numbers a , b , and c : a(b+c) = ab + ac	I can <u>distribute</u> a number outside parentheses to each term inside parentheses without changing the meaning of the expression.

Simplify (Combine Like Terms)	For any real numbers a , b , and x : ax + bx = (a + b)x	I can <u>combine like terms</u> without changing the meaning of the expression.
Symmetric Property of Equality	If a = b, then b = a	I can <u>swap the sides</u> of an equation without changing the solutions.
Reflexive Property of Equality	For any real number a : a = a	Any number is equal to itself.
Substitution Property of Equality	If a = b, then a can be substituted for b in any expression or equation	If I know the value of a variable, I can substitute that into other expressions and equations.

1. Solve 48 = 5(2x - 7) + 3. Justify each step. You may not use all the rows in the proof.

Statement	Reason

1. Solve 48 = 5(2x - 7) + 3. Justify each step. You may not use all the rows in the proof.

Answers may vary.

Statement	Reason
48 = 5(2x - 7) + 3	Given
48 = 10x - 35 + 3	Distributive P.o.E.
45 = 10x - 35	Subtraction P.o.E.
80 = 10x	Addition P.o.E.
8 = <i>x</i>	Division P.o.E.
<i>x</i> = 8	Symmetric P.o.E.

Solve 3x + 4 = 12(x + 2) - 5x.
Justify each step. You may not use all the rows in the proof.

Statement	Reason

2. Solve 3x + 4 = 12(x + 2) - 5x. Justify each step. You may not use all the rows in the proof.

Answers may vary.

Statement	Reason
3x + 4 = 12(x + 2) - 5x	Given
3x + 4 = 12x + 24 - 5x	Distributive P.o.E.
3x + 4 = 7x + 24	Combine Like Terms
-4x + 4 = 24	Subtraction P.o.E.
-4x = 20	Subtraction P.o.E.
x = -5	Division P.o.E.

3. Solve $\frac{X}{8} + \frac{5}{6} = 2$. Justify each step. You may not use all the rows in the proof.

Statement	Reason

3. Solve $\frac{X}{8} + \frac{5}{6} = 2$. Justify each step. You may not use all the rows in the proof.

Answers may vary.

Statement	Reason
$\frac{x}{8} + \frac{5}{6} = 2$	Given
3x + 20 = 48	Multiplication P.o.E.
3 <i>x</i> = 28	Subtraction P.o.E.
x = 28/3	Division P.o.E.

4. Each of the following equations has the same solutions as 3(x + 4) = 7. Explain why by giving the name of one of the reasons we have discussed.

$$3x + 12 = 7$$

$$6(x+4)=14$$

$$3(x+4)-5=2$$

$$7 = 3(x + 4)$$

4. Each of the following equations has the same solutions as 3(x + 4) = 7. Explain why by giving the name of one of the reasons we have discussed.

3x + 12 = 7 Distributive P.o.E. [distributed 3 to x and 4]

6(x + 4) = 14 Multiplication P.o.E. [multiplied both sides by 2]

3(x + 4) - 5 = 2 Subtraction P.o.E. [subtracted 5 from both sides]

7 = 3(x + 4) Symmetric P.o.E. [swapped left and right sides]

Today's CCGPS Standards

MCC9-12.A.REL1 Explain each step in solving a simple equation as following fr.om the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

