

$$2x - y = -7$$
$$-4x + y = 4$$

b. The equations are ready to be added.

$$5x - 2y = 3$$
$$2x + y = 3$$

b. Multiply the first equation by -2.

d. This system cannot be solved using elimination.

Solve each system using the elimination method. Then state the solution.

(-6, -9) 3.
$$3x - 5y = 27$$

 $-3x + 2y = 0$

NO. Solv 100
$$\frac{10x-9y=17}{-20x+18y=14}$$

$$\frac{(-2, 1)}{4} \underbrace{5 \left(3x - 4y = -10\right)}_{10x + 5y = -15}$$

A 6. How many solutions does the system 4x+4y=24 have?

- (A.) one solution
- B. two solutions
- C. infinitely many solutions
- D. no solution

C 7. Sherri has some one-dollar bills and some five-dollar bills. She has 14 bills worth \$30. How many one-dollar bills does Sherri have?

- A. 15
- B. 9
- C.) 10

D. 5

B 8. Which is the correct system of equations to find the cost of a single hot dog and a single soft drink?

One group of people purchased 10 hot dogs and 5 drinks at a cost of \$35.00. A second group bought 7 hot dogs and 4 drinks at a cost of \$25.25. Let x = the cost of a single hot dog and y = the cost of a single soft drink.

a.
$$x+y=15$$

b.
$$10x + 5y = 35.00$$
$$7x + 4y = 25.25$$

c.
$$10x + 5y = 25.25$$
$$7x + 4y = 35.00$$

d.
$$x+y=35.00$$

 $x+y=25.25$

system to find the two number	and the difference is 52. Setup a system of equations and solve the s. Show all work to receive credit!
V+y=123 V-y=52 2x=174	9. (87, 35)
<u> </u>	<u></u>
2x=175	t <u>X</u> =81
	variable and write a system of linear inequalities that could be used
to solve the problem. DO NOT S	SOLVE.
	wraps: vegetarian and chicken. The vegetarian wrap cost \$1.00 and Find the number of each type of wrap needed to be sold each day to e at least \$98.
the chicken wrap cost \$1.80. F	Find the number of each type of wrap needed to be sold each day to

Graph the system of linear inequalities given with the scenario below.

11. Linda works at a pharmacy for \$15 an hour. She also babysits for \$10 an hour. Linda needs to earn at least \$90 per week, but she does not want to work more than 15 hours per week. Let x = the number of hours she works at the pharmacy and y = the number of hours she babysits. The inequalities for this scenario are given below.

Use #11 to answer the following questions.

- 12. Why does the graph fall in the first quadrant?

 The graph falls in quadrant I, because the measure of time(hour) is positive.
- 13. Use your graph to determine a possible solution to the problem and explain why it works. (10, 3) would be a solutions as it falls in the shaded region.

14. Determine if the given ordered pair is a solution to the system. Show why or why not.
$$2x+y=12$$

$$3x-y=21; (9,-6)$$

$$3(9)-(-6)=21$$

$$14. Circle one: yes$$

$$12=12$$

27 + 6 = 21 $33 \neq 21$ 15. Solve the system by graphing.

$$3x + y = -2$$

$$x + 2y = 6$$

$$-x$$

$$2x = -x + 6$$

$$2 = -2$$

$$x = -1$$

$$x = -1$$

$$x = -1$$

- 14. Circle one: yes or no
- 15. Solution: (-) 4)

Name the solution of the system that is graphed.

Solution: ____

no solution

17. Is (3,-2) a solution to the linear inequality?

Circle yes or no

For #18 & 19, complete the graph by shading appropriately.

20. Graph the inequality to find the solution.

21. Graph the system of inequalities to find the solution.

$$y < 2x - 1$$

$$y \ge \frac{1}{2}x + 2$$

_22. Choose the system of linear inequalities shown in the graph.

$$y > -\frac{1}{3}x + 2$$

$$y > -\frac{5}{3}x - 2$$

$$y \le -\frac{1}{3}x + 2$$

$$y \ge -\frac{5}{3}x - 2$$

$$y \ge -\frac{5}{3}x - 2$$

$$y \ge -3x + 2$$

$$y \ge -2x - 3$$

